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The discrete variable representation �DVR� is a well known and widely used computational technique in
many areas of physics. Recently, the Lagrange-Lobatto basis has attracted increasing attention, especially for
radial Hamiltonians with a singular potential at the origin and finite element DVR constructions. However,
unlike standard DVR functions, the Lagrange-Lobatto basis functions are not orthogonal. The overlap matrix
is usually approximated as the identity using the same quadrature approximation as for the potential. Based on
the special properties of overlap matrix of Lagrange-Lobatto polynomials, an explanation of the success of the
identity approximation, including error bounds, is presented. Results for hydrogen and the more nontrivial
potentials of self-consistent all-electron density functional atomic calculations are also given.
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I. INTRODUCTION

In many areas of computational science and engineering
the discretization of the relevant fundamental equations
�choice of basis� is of critical importance to efficiently obtain
a stable and accurate solution. The discrete variable repre-
sentation �DVR� �1� has its origins in the works of Harris
et al. �2� and Dickinson and Certain �3�. Since then it has
become a widely used and developed method in several areas
of physics with a huge amount of literature describing differ-
ent DVR schemes tailored to specific problems. A review of
the DVR is given in Ref. �4� and a selection of recent work,
from atomic physics to electronic structure calculations, in
Refs. �5–12�.

Work presented in �13� notes the high accuracy of the
Lagrange-Lobatto basis in singular central potential prob-
lems. These basis functions have also been used for accurate
density functional atom calculations �14,15�. To our knowl-
edge, this basis was first suggested in �16�. A combination of
the Lagrange-Lobatto functions and the finite element
method was also suggested in �17�.

Usually the basis sets in the DVR are tailored to satisfy a
given Gauss quadrature rule exactly and are therefore for-
mally orthogonal. However, the Lagrange-Lobatto basis is
not formally orthogonal due to the preassigning of two of the
quadrature nodes and the resulting loss of accuracy in the
quadrature rule. However, the Lagrange-Lobatto basis has
been used many times in the past for a range of problems and
has proven accurate even when the overlap is approximated
as the identity matrix.

The main aim of this work is to place the “identity ap-
proximation” �treating the overlap as the identity matrix�
when using the Lagrange-Lobatto basis on a firm theoretical
foundation. It is also hoped this work will encourage re-
search into the possibilities of basis sets with special nonor-
thogonality in which a relaxation of the formal orthogonality
conditions can bring significant flexibility to the basis yet
some of the extra difficulties may be circumvented.

II. BACKGROUND

First, a brief description of the Lagrange-Lobatto basis
and the DVR approximation will be given. For a more com-
plete discussion of the DVR method, see Ref. �4�.

A. DVR basis

The general underlying methodology used in this work
has been referred to as the DVR and the Lagrange-mesh
method. For the most general definition of these methods we
may assert we use a basis set that obeys the cardinality
condition

ui�xj� =
�ij

�Ai

, �1�

and approximate a matrix of a function of x by the function
of the matrix representation of x. This leads to the potential
matrix being diagonal in the DVR basis. In this work we
consider basis functions that take the form of Lagrange in-
terpolating polynomials �up to a constant weighting factor�

ui�x� =
1

�Ai
�
k=0

n+1
x − xk

xi − xk
, k � i . �2�

Clearly, these functions satisfy the condition given in Eq. �1�.
The sets �Ak� and �xk� may be chosen to coincide with the
weights and abscissas, respectively, of a Gauss quadrature
rule. We shall refer to the basis sets by the quadrature rule
used to construct them; for example, Fig. 1 displays what we
shall refer to as the “Lagrange-Lobatto” basis. In what fol-
lows the notation P�n� will be used to denote an arbitrary
polynomial of degree n when it is only the degree of the
polynomial that is of interest �for example, the functions in
Eq. �2� are in P�n+1��.
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FIG. 1. The Lagrange-Lobatto basis functions for n=4.
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We start with the Gauss quadrature rule for a positive
weight function p�x�,

	
a

b

p�x�f�x�dx 
 �
k=0

n+1

Akf�xk� , �3�

where the weights �Ak� and abscissas �xk� may be evaluated
to make the quadrature exact if f�x� is a polynomial of de-
gree �2n+3 �f�x��P�2n+3��x��. If p�x�=1 then Eq. �3� is
termed Gauss-Legendre quadrature with weights and abscis-
sas we shall denote by �Ak

�1�� and �xk
�1��, respectively. The

abscissas are real, distinct, and lie within �a ,b�. Clearly, a
basis of the form �2�, defined in terms of �Ak

�1�� and �xk
�1��,

will diagonalize polynomial operators up to unitary degree
�i.e., xn, n�1�. In other words, the basis is orthogonal on
�a ,b�,

	
a

b

ui�x�uj�x�dx = 	
a

b

P�2n+2��x�dx

= �
k

Ak
�1�ui�xk

�1��uj�xk
�1�� = �ij , �4�

and diagonalizes the coordinate operator on �a ,b�, in the true
spirit of the DVR,

	
a

b

ui�x�xuj�x�dx = 	
a

b

P�2n+3��x�dx

= �
k

Ak
�1�ui�xk

�1��xk
�1�uj�xk

�1��

= �ik� jkxk
�1� = xi

�1��ij . �5�

However, for many physical problems, such as the radial
Schrödinger equation, we may wish to specify our boundary
conditions—which is not possible with the Gauss-Legendre
quadrature rule.

B. Quadrature rules with preassigned nodes

For the sake of completeness some of the general ideas of
preassigned quadrature nodes will be briefly introduced be-
fore moving to the specific case of Gauss-Lobatto quadrature
that fixes two points at the limits of the integration range. For
a more extensive discussion of these topics, see Ref. �18�. In
general, we may construct a quadrature rule with m preas-
signed nodes and allow n points to be determined to make
the quadrature rule exact for an integrand of highest polyno-
mial degree,

	
a

b

p�x�f�x�dx = �
k=1

n

Akf�xk� + �
l=1

m

Ãlf�x̃l� . �6�

Equation �6� is exact if f�x��P�2n+m−1�.
In Gauss-Lobatto quadrature the limits of integration are

preassigned to be abscissas in the quadrature formula. The
Gauss-Lobatto quadrature rule, with weights �Ak� and abscis-
sas �xk� reads

	
a

b

p�x�f�x�dx 
 A0�f�a� + f�b�� + �
k=1

n

Akf�xk� , �7�

which is exact for f�x��P�2n+1��x�. This reduction in accu-
racy destroys the formal orthogonality of the basis functions
defined in terms of �xk� �using Eq. �2�� as each basis function
is a polynomial of degree n+1 leading to the integrand of the
overlap integral �(ui�x�uj�x�)� being a polynomial of degree
2n+2. For Gauss-Lobatto quadrature the remainder is given
by

Rn
�a,b��f� =

f �2n+2����
�2n + 2�!	a

b

p�x��x − a��x − b��wn�x��2 dx ,

�8�

where a���b and f �2n+2� is the integrand differentiated
�2n+2� times. For p�x�=1 on the range �−1,1� the function
w�x� differs from the Jacobi polynomial Pn

�1,1��x� in a simple
way,

wn�x� =
2nn ! ��n + 3�

��2n + 3�
Pn

�1,1��x� , �9�

and the quadrature weights may be expressed in terms of
Jacobi polynomials in the following way:

Ak =
8�n + 1�

�n + 2��1 − xk
2�2�Pn

�1,1���xk��2
, �10�
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FIG. 2. Average absolute value of diagonal �upper� and off-
diagonal �lower� overlap matrix elements with increasing number of
basis functions.
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A0 =
2

�n + 1��n + 2�
. �11�

The weights and abscissas on the interval �−1,1� can be
trivially scaled for an interval of arbitrary length �a ,b� using

Ai ←
1

2
�b − a�Ai, �12�

xi ←
1

2
��b + a�xi + �b − a�� . �13�

Often the Gauss quadrature rule is used to justify approxi-
mating the overlap as the identity. However, Fig. 2 �evalu-
ated using accurate numerical integration� shows just how
poor the quadrature approximation is, and how slowly the
overlap converges to the identity matrix with increasing basis
size. The overlap of the basis functions given in Eq. �2� on
�a ,b� is

Sij = 	
a

b

ui�x�uj�x�dx = 	
a

b

P�2n+2��x�dx

= �
k=1

n

Akui�xk�uj�xk� + �ij = �ij + �ij , �14�

where �ij is the error in the quadrature approximation. Ignor-
ing this error term has been used successfully in a number of

calculations �13–17�. These works all approximate the over-
lap as the identity �using the Gauss approximation� and ob-
tain very accurate results despite what is shown in Fig. 2. We
now turn to examine in detail why this approximation has
proven so successful.

III. OVERLAP OF LAGRANGE-LOBATTO POLYNOMIALS

For basis functions defined as in Eq. �2� the overlap ma-
trix is

Sij =
1

�AiAj
	

a

b

�
k=0,�i

n+1
�x − xk�
�xi − xk�

�
l=0,�j

n+1
�x − xl�
�xj − xl�

dx . �15�

For our purposes we may make the simplification

ui�x�uj�x� =
1

�AiAj
�

k=0,�i

n+1
1

�xi − xk�
�

l=0,�j

n+1
1

�xj − xl�

��x2n+2 + P�2n+1�� . �16�

Due to the basis functions being defined in terms of the
quadrature weights and abscissa there is no integration range
dependence in the true overlap integral �and hence in the
error term�. Therefore, we may limit our analysis of �ij to the
range �−1,1�. On this range the quadrature weights for inter-
nal nodes are given by Eq. �10�. Therefore, we may write the
remainder for the overlap matrix element Sij �from the inte-
grand ui�x�uj�x�� using Eq. �8� as

Rn
�−1,1�

„ui�x�uj�x�… =
�n + 2�

8�n + 1�
��1 − xi

2�Pn
�1,1���xi��1 − xj

2�Pn
�1,1���xj��

�
k=0,�i

n+1

�xi − xk� �
l=0,�j

n+1

�xj − xl�

	
−1

1

�wn�x��2�x2 − 1�dx , �17�

with the � dependence in Eq. �8� differentiated out as our
overlap integrand is always a polynomial of degree 2n+2.
Given that,

Pn
�1,1���xi� =

��2n + 3�
2nn ! ��n + 3� �

k=1,�i

n

�xi − xk� , �18�

the magnitude of the error has no i , j dependence, and the
error may be written

Rn
�−1,1�

„ui�x�uj�x�… = 	ij
�n + 2�

8�n + 1�	−1

1

�Pn
�1,1��x��2�x2 − 1�dx ,

	ij = 
1 if �i − j� = 0 or is even

− 1 if �i − j� is odd.
�19�

Therefore, for a given basis size n the overlap has the very
simple form

Sij = �ij − �ij, �ij = �− 1� j−i
n, �20�

where 
n is the magnitude of the quadrature error between
basis functions of degree n+1. The reason for this structure
is given by the formula for the error in the Gauss-Lobatto
quadrature rule

Rn�f� = − �n
f �2n+2����
�2n + 2�!

, �21�

where for our purposes �n may be regarded as a constant as
our overlap integrands are all of the same degree. The lead-
ing term in our integrand will have the form, for example
�for i , j�1, i , j�2�,

x�2n+2�

�xi − x1��xi − x2� ¯ �xj − x1��xj − x2�¯
. �22�

The sign of the denominator determines the sign of the re-
mainder. If i= j then the denominator is positive, hence the
error is negative. Therefore on the diagonal we have ele-
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ments with the value 1−
n. The overlap with the next basis
function changes the sign of the denominator, and so on.
Therefore, we obtain the oscillatory structure described in
Eq. �20�. The matrix with elements �ij is an example of a
product matrix that can be written as the outer product of a
vector with itself and has appeared previously in the litera-
ture �19�. A matrix of this structure must possess a highly
oscillating normalized eigenvector of the form

�vn� = �1/�n,− 1/�n,1/�n,− 1/�n, ¯ � . �23�

If a vector �ṽ n� is orthogonal to �vn� then

�vn�ṽ n� =
1
�n��i

�− 1�iṽi
n� = 0. �24�

Therefore, the matrix-vector product of the overlap, or a
function of the overlap as F�S�=�k=0

� Sk, on ṽn yields

�
j

Sijṽ j
n = �

j

��ij − �− 1� j−i
n�ṽ j
n

= ṽi
n − �− 1�i
n�

j

�− 1� jṽ j
n = ṽi

n. �25�

Therefore all other n−1 eigenvectors of the overlap, other
than �vn�, have eigenvalues of unity. The above results are
very revealing about the effect of approximating the overlap
by the identity matrix. Essentially, if the solution vector has a
small overlap with the most rapidly oscillating function the
basis can represent, which is the case in most physically
motivated calculations interested in low-lying energy states,
then the identity approximation will have a negligible effect
on the result.

IV. ERROR BOUNDS FOR THE IDENTITY
APPROXIMATION

In what follows we are interested solely in the additional
error brought by the identity approximation, therefore it will
be assumed the Hamiltonian matrix elements are evaluated
exactly �i.e., the DVR approximation is not used�. Let us
define

Hij
�un� =	 ui

n�x�Ĥuj
n�x�dx , �26�

Sij
�un� =	 ui

n�x�uj
n�x�dx . �27�

We may construct a linearly independent basis set �
i
n−1� that

spans the space P�n� and obeys

�vn�
i
n−1� = 0, i = 1, . . . ,n − 1. �28�

We may solve the eigenvalue problem

H�
n−1���i
�
n−1�� = �i

�n−1�S�
n−1���i
�
n−1�� , �29�

and then project the solution ��i
�
n−1�� onto the basis set �ui

n�,
which we shall denote ��i

�
n−1�→�un��. This projection satisfies,
by construction,

�vn��i
�
n−1�→�un�� = 0, i = 1, . . . ,n − 1. �30�

As a consequence of this and Eq. �25� we may write

�Ri� = �H�un� − �̃ i
nI���i

�
n−1�→�un�� = �H�un� − �̃ i
nS���i

�
n−1�→�un�� ,

�31�

where

H�un� = �S�un��−1/2H�un��S�un��−1/2, �32�

and

�̃ i
n = ��i

�
n−1�→�un��H��i
�
n−1�→�un��

= ��i
�
n−1�→�un��H��i

�
n−1�→�un�� . �33�

If �Ri �Ri��0 then a given eigenvalue obtained using the

identity approximation �̄ i
n must obey the following:

�i
n−1 � �̄ i

n � �i
n. �34�

due to the Hylleraas-Undheim theorem. So, the error in-
curred by making the identity approximation is bounded by
the additional error introduced by reducing the basis size by
a single function in a calculation including the full overlap.
This is demonstrated numerically in Table I where lower and
middle entry for each eigenvalue was obtained from calcula-
tions including the full overlap. The lower and middle values
for each eigenvalue was obtained using a basis of size N

TABLE I. Lowest eigenvalues for l=0 �Eq. �37�� with R
=50 a.u. radius �see Sec. V explanation�. For each eigenvalue given
the upper value was calculated approximating the overlap as the
identity, the middle and lower values include the full overlap cal-
culated with a basis size of N and N−1, respectively. The potential
matrix is exactly diagonal in the Lagrange-Lobatto basis for l=0.

n N=10 N=20 N=40 Exact

1 −0.39428839 −0.49997882 −0.50000000 −0.50000000

−0.40940653 −0.49998630 −0.50000000

−0.36928276 −0.49995041 −0.50000000

2 −0.11142228 −0.12500000 −0.12500000 −0.12500000

−0.11390159 −0.12500000 −0.12500000

−0.10504517 −0.12499998 −0.12500000

3 −0.05165408 −0.05555555 −0.05555555 −0.05555555

−0.05237384 −0.05555555 −0.05555555

−0.04890620 −0.05555555 −0.05555555

4 −0.02957707 −0.03120434 −0.03120434 −0.03120434

−0.02985518 −0.03120434 −0.03120434

−0.02804866 −0.03120434 −0.03120434

5 −0.01651543 −0.01786476 −0.01786476 −0.01786476

−0.01671341 −0.01786476 −0.01786476

−0.01472896 −0.01786476 −0.01786476

6 −0.00060937 −0.00226590 −0.00226590 −0.00226590

−0.00062789 −0.00226590 −0.00226590

+0.00332111 −0.00226590 −0.00226590
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−1 and N, respectively. The upper value �obtained from N
basis functions using the identity approximation� is shown to
satisfy Eq. �34�.

It is uncertain whether other nonorthogonal basis sets ob-
tained from a Gauss quadrature rule in a similar manner to
the Lagrange-Lobatto functions used here yield similar
pleasing results, though results from some alternative basis
sets have been successful �12�. This may prove an interesting
topic for future research.

V. NUMERICAL EXAMPLES

In what follows the size of the radial computational di-
mension R is given in atomic units and the number of basis
functions is denoted by N. All energies given are also in
atomic units. The kinetic matrix elements Tij can be evalu-
ated exactly using the Gauss-Lobatto quadrature rule in the
following way:

Tij = �
k=0

N+1

�kui��xk�uj��xk� , �35�

where

ui��xj� =
1

�xi − xj�
�

k=0,�i,j

N+1
�xj − xk�
�xi − xk�

, j � i , �36�

resulting in the kinetic integral being a polynomial of degree
2N.

A. Hydrogen

First, results for the radial Schrödinger equation for hy-
drogen are presented:

�−
1

2

d2

dr2 +
l�l + 1�

2r2 −
1

r
�Rnl�r� = EnlRnl�r� , �37�

where Rnl�0�=0 and Rnl���=0 and we consider the problem
in a finite volume by setting Rnl�R�=0. This test problem
provides simplicity, a singular Hamiltonian, and has been
used by previous authors �12,13� as a benchmark so results
from this work may be compared directly. Some of the re-
sults in Table I reproduce those given by Schneider and
Nygaard �13� and are included for ease of comparison. How-
ever, the operator r−1 is exactly diagonal in the Lagrange-
Lobatto basis if a=0, therefore the results presented in �13�
do not elucidate the accuracy of the method in relation to the
potential evaluation as only results for l=0 were presented.

Tables I and II show results for the solution of Eq. �37� for
l=0 and l=1, respectively. The case for l=0 �Table I�, using
the diagonal potential matrix, is exact and therefore the ef-
fects of the identity approximation are clearly highlighted.
For l=1 �Table II� the exact potential matrix is full, therefore
the results for diagonal potential with the identity approxi-
mation are compared to the full calculation of the potential
matrix �using highly converged numerical integration� in-
cluding the overlap. In both cases it can be seen that the
DVR approximation with the identity approximation, while
not variational, converges very rapidly.

B. Density functional atom calculations

We now present results for the more nontrivial case of
solving the Kohn-Sham equations self-consistently in a ra-
dial potential. The Hamiltonian is given by

H = −
1

2

d2

dr2 +
l�l + 1�

2r2 −
Z

r
+ VH�r� + Vxc�r� , �38�

where Z is the charge on the nucleus, VH is the Hartree
potential, and Vxc is the local density approximation to the
exchange-correlation potential �in this work the functional
presented in Ref. �20� is used�. Table III shows the results for
a selection of elements. As well as elements that are very
common in simulations, erbium is also given as a stringent
test of the convergence. All calculations were converged with
respect to the radial computational dimension R and then
with respect to the number of basis functions.

TABLE II. Lowest eigenvalues for l=1 �Eq. �37�� with a R
=50 a.u. radius. For each eigenvalue, given the upper value was
calculated approximating the overlap as the identity and using the
diagonal potential approximation, the lower value includes the full
overlap and potential matrix.

n N=10 N=20 N=40 Exact

1 −0.12653295 −0.12500000 −0.12500000 −0.12500000

−0.12015014 −0.12500000 −0.12500000

2 −0.05590431 −0.05555555 −0.05555555 −0.05555555

−0.05361762 −0.05555555 −0.05555555

3 −0.03129115 −0.03121650 −0.03121650 −0.03121650

−0.03027894 −0.03121650 −0.03121650

4 −0.01817683 −0.01817594 −0.01817594 −0.01817594

−0.01734238 −0.01817594 −0.01817594

5 −0.00316197 −0.00331888 −0.00331888 −0.00331888

−0.00197214 −0.00331888 −0.00331888

6 +0.01755777 +0.01653870 +0.01653870 +0.01653870

+0.01988709 +0.01653870 +0.01653870

TABLE III. All-electron self-consistent density functional atom
calculations �spin-averaged, exchange-correlation functional given
in �20�� using the Lagrange-Lobatto basis with the identity approxi-
mation and diagonal potential matrix. Total energies �Etot� were
converged to within 1 meV of accepted results �21�.

Atom N R �a.u.� Etot �a.u.�

H 10 9.1 −0.4456740

C 32 9.9 −37.4257391

O 43 8.1 −74.4730447

Si 63 12.1 −288.1983740

Er 202 14.6 −12494.7182679
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VI. CONCLUSION

The Lagrange-Lobatto basis set used in numerous studies
in the past has been examined. The reason behind the success
of approximating the overlap as the identity in these calcu-
lations has also been explained rigorously, adding weight to
calculations using these functions. Furthermore, results

for all-electron density functional atom calculations have
been given.
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